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as little as a 5-10-fold excess of thymidine, we are able to get 
>95% conversion to 7a/b. Since the product [7-15N]-labeled 
deoxynucleosides do not have protons with pfCs below 10, they 
are readily isolated from the enzymatic reaction mixture by using 
hydroxide form anion-exchange resin. All of the other components 
of the mixtures have sufficiently acidic protons that they are 
retained by the resin, while the product 7a/b is eluted by using 
a simple water/methanol gradient.23 This is therefore a highly 
efficient glycosylation procedure with regard to the [7-15N]-labeled 
material. Moreover, as both deoxyadenosine and 2-amino-
deoxyadenosine are excellent substrates for deamination by 
adenosine deaminase,24 conversion of 7a/b to 9a/b proceeds in 
quantitative yield. 

The purine syntheses reported above emphasize efficient use 
of 15N, employ a minimal number of synthetic steps, and do not 
require complex isolation or purification procedures. The de-
oxynucleoside syntheses make use of high-yield transformations 
involving inexpensive and readily available enzymes. There are 
no protection or deprotection steps, and the only chromatography 
is a rapid, low-resolution ion-exchange column after the trans­
glycosylation reaction step. These procedures, moreover, are 
applicable to the ribo series as well, simply by substituting uridine 
as a ribosyl donor along with uridine phosphorylase for the 
transglycosylation step.21,22 This represents, therefore, a general 
route to synthesis of [7-15N!-labeled nucleosides of the adenine 
and guanine families. 
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Stereostructure of Pimaricin [J. Am. Chem. Soc. 1990, 112, 
4060-4061]. JEAN-MARC LANCELIN and JEAN-MARIE BEAU* 

Page 4060: In Figure 1 R = Me for structure 2 should read 
R = Ac. 

Page 4061, left column, line 3: The IR and 9S configurations 
should be the IS and 9/? configurations. 

Page 4061, right column, line 5: The AS configuration should 
be the 4/? configuration. This change does not affect structure 
10 (Figure 2) for which the correct chiral centers have been drawn. 
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rylase generates 2-deoxy-a-D-ribose 1-phosphate (dRib-l-P) from 
the thymidine, and bacterial purine nucleoside phosphorylase then 
couples the dRib-l-P with the purine derivative 5a/b.21,22 Using 
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